Serum-free large-scale transient transfection of CHO cells.
نویسندگان
چکیده
To date, methods for large-scale transient gene expression (TGE) in cultivated mammalian cells have focused on two transfection vehicles: polyethylenimine (PEI) and calcium phosphate (CaPi). Both have been shown to result in high transfection efficiencies at scales beyond 10 L. Unfortunately, both approaches yield higher levels of recombinant protein (r-protein) in the presence of serum than in its absence. Since serum is a major cost factor and an obstacle to protein purification, our goal was to develop a large-scale TGE process for Chinese hamster ovary (CHO) cells in the absence of serum. CHO-DG44 cells were cultivated and transfected in a chemically defined medium using linear 25 kDa PEI as a transfection vehicle. Parameters that were optimized included the DNA amount, the DNA-to-PEI ratio, the timing and solution conditions for complex formation, the transfection medium, and the cell density at the time of transfection. The highest levels of r-protein expression were observed when cultures at a density of 2.0 x 10(6) cells/ml were transfected with 2.5 microg/ml DNA in RPMI 1640 medium containing 25 mM HEPES at pH 7.1. The transfection complex was formed at a DNA:PEI ratio of 1:2 (w/w) in 150 mM NaCl with a 10-min incubation at room temperature prior to addition to the culture. The procedure was scaled up for a 20-L bioreactor, yielding expression levels of 10
منابع مشابه
Using transient transfected Chinese hamster ovary (CHO) cells by pET28a-LIC-NTF4 in gene therapy
Introduction: Neurotrophins, as a family of proteins, are responsible for induction of the survival, development, and function of neurons. Also, neurotropic factors are growth factors like Neurotrophins that help neurons survive. Moreover, Neurotrophins differentiate between progenitor cells so that neurons are formed. Despite the fact that the majority of mammalian brain neurons are produced p...
متن کاملIntracellular Localization of FLAG-Peroxisomal Protein in Chinese Hamster Ovary (CHO) Cells
Epitope tagging is a method of expressing proteins whereby an epitope for a specific monoclonal antibody is fused to a target protein using recombinant DNA techniques. The aim of this study was to sub-clone the peroxisomal protein (PEP) cDNA into a mammalian expression vector leading to the formation of a chimeric PEP-cDNA containing the FLAG epitope. The FLAG-PEP recombinant cDNA was construc...
متن کامل[Transient gene expression of soluble VEGFR2: I-IV].
The extracelluar domain I-IV of target gene VEGFR2 (Vascular endothelial growth factor receptor 2) was cloned from villus of trimester abortion by RT-PCR, and linked to the expression vectors. Then, the transfection conditions were optimized in serum-free suspension culture HEK293 using GFP (Green fluorescence protein) as the report gene. The results showed that the optimal transfection efficie...
متن کاملNovel orbital shake bioreactors for transient production of CHO derived IgGs.
Large-scale transient gene expression in mammalian cells is being developed for the rapid production of recombinant proteins for biochemical and preclinical studies. Here, the scalability of transient production of a recombinant human antibody in Chinese hamster ovary (CHO) cells was demonstrated in orbitally shaken disposable bioreactors at scales from 50 mL to 50 L. First, a small-scale multi...
متن کاملTransient gene expression with CHO cells in conditioned medium: a study using TubeSpin® bioreactors
Background Transient gene expression (TGE) allows rapid protein production in mammalian cells and has become an important tool in the pharmaceutical product development pipeline [1]. Polyethylenimine (PEI)-mediated, high-density transfection allowed to express recombinant proteins at yields exceeding 1 g/L in only a few weeks [2]. Although highly efficient protocols are available, volumetric sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 87 4 شماره
صفحات -
تاریخ انتشار 2004